
www.manaraa.com

Object-relational concepts in database managementsystemsGerald AnleitnerSeminar on applications and concepts of database systems12th February 1998Contents1 Introduction 22 What we want 23 Object-relational database technology:a dummies' guide 33.1 Base type extension . 33.1.1 The desire . 33.1.2 Postgres95's implementation of base datatype extension . 43.2 A general-purpose programming language 63.2.1 Programming within a database 63.2.2 Oracle's PL/SQL . 63.3 Complex objects . 73.3.1 Set-based datatypes . 83.3.2 Compound datatypes . 83.3.3 Implementation issues . 103.4 Oracle8's way to complex datatypes 113.4.1 A little bit of background 113.4.2 An example database . 113.5 Inheritance . 213.5.1 Domain inheritance . 213.5.2 Inheritance in Postgres95 224 The future of ORDBMSs 235 Addendum 245.1 External procedures . 245.2 Object views . 24
1

www.manaraa.com

1 IntroductionDuring the last decade, the object-oriented approach got more and more ac-cepted as the way to model and to program in computer industry and sci-ence. Thus, it seems only natural that the wave of OO inuences the world ofdatabases as well.The relational model dominates the world of databases for quite a long timenow. But OO creates movement in this scene: Object-oriented databases ap-pear and the big vendors like Informix or Oracle sell their products as object-relational database management systems. The following is an introduction tothis new "style" of database management systems.2 What we wantThe already mentioned rise of object-oriented methodology and technology, thegrowing demand and usage of multimedia, compound documents and computer-added design applications creates more and more pressure on database systemsto support these new technologies. As (CLC95) state, if relational databasescan adapt to this new challenge, they might well stay in business.� Multimedia and related technologies have formed new datatypes thatare currently not represented in relational database management sys-tems. It would be desirable to extend an existing DBMS with new basedatatypes. And this means: Not only adding a new type like externalfile, but adding real support for these datatypes (e.g. methods thatsend video streams to clients, that compare images, operators to reasonon the datatype etc.).� An object-oriented approach requires in particular the possibility of de�n-ing new, complex datatypes and, in addition, the possibility of establishinga hierarchical order on the de�ned datatypes (inheritance etc.).� The database administrator or programmer must be able to create newprocedures within the database to allow comparison or other operations onthe datatypes. This enables the processing of more complex transactions,triggers, adds the possibility to create an intelligent database.So what can/must be done to make RDBMSs ready for the challenge? Thereare two main approaches:� Adding object extensions to the standard relational model. This is theapproach this paper focuses on.� Adding an object layer on top of the relational database.This object layer (another word might be "wrapper") simulates an object-oriented interface on top of a relational database. It might as well be seenas some kind of middleware. 2

www.manaraa.com

datatype comment max valuevarchar2 variable size character string 4000 bytesnvarchar2 variable size, natioanl character set 4000 byteschar �xed length character set 2000 bytesnchar �xed length national character set 2000 bytesnumber integer or real [38],[-84 - 127]date type for date and time up to 31/12/4712long character string 231 � 1 bytesraw binary data 2000 byteslong raw alpha-numeric 2 GBrowid unique address of a row in its tableclob character large object 4 GBnclob national . . . 4 GBblob binary large object 4 GBb�le locator to external �lesystem 4 GBTable 1: Oracle8's base datatypesIn the following sections, I will provide a deeper introduction to the above men-tioned requirements for object-relational database management systems (basedatatype de�nition, complex datatypes, inheritance, programming) togetherwith examples from Oracle8 and Postgres95.3 Object-relational database technology:a dummies' guideThe term "object-relational" does not seem to have an exact de�nition. Thenotion of an object-relational database management system (subsequently: OR-DBMS) in this paper is based on text in (SM96) and (SKS97), enriched withtheoretical thoughts and implementation approaches which the new capabilitiesof ORDBMSs might require.3.1 Base type extension3.1.1 The desireAccording to (SM96), one new feature of ORDBMSs is the possibility of ex-tending the database system with new base types. First, have a look at thebase datatypes of Oracle8, which claims to be an ORDBMS (see table 1). In(SQL92), the corresponding operators for each datatype are precisley de�nedand there is no possibility to add new base types to the system1. Oracle8 ex-tends the standard by providing types like "external". The impossibility ofde�ning new base types is a obvious lack of exibility.1Actually, (SQL92) de�nes even less base datatypes, but normaly, DBMS vendors do notcare too much about the standard. . . 3

www.manaraa.com

To allow the de�nition of datatypes, we �rst have to make sure what we meanwith this, resp. what the user has to do to de�ne a new datatype.datatype speci�cation A name has to be assigned to the datatype, togetherwith information about the storage requirements of the datatypes (han-dling of dynamic size?!). It might be necessary to let the user decide whereinstances of the type should be stored: Within the database system, orby using some kind of external resource.operators and methods There is no use in de�ning new database types with-out any means to reason on them. What is an integer without a sumoperator, without comparison operators, what would SQL be without thegreater-equals operator? Thus, there must be a way to de�ne new oper-ations on the de�ned datatypes.implementation and handling This requires the possibility of dynamicallylinking new operators to the database as it would not be adequate toshut down and start up, or relink, the database each time a new basetype is added. Furthermore, to assure e�cient and fast work with newdatatypes, the programmer should be able to create access structures fornew datatypes.This shows already a dilemma of the base datatype story: Lots of possiblesecurity wholes, as dynamic linking can add problems when new code isnot "clean", external storage mediums which are not controlled by thedatabase can cause problems, not to think about many errors that thecode of the programmed operators can comprise.It is quite interesting that Oracle8 allows the usage of external procedures.A little introduction of this functionality can be found in the addendum.3.1.2 Postgres95's implementation of base datatype extensionAs Oracle8 does not allow the creation of base datatypes, I show an exampleusing Postgres95 here (see (PG95)).First of all, C-code has to be written. The actual type de�nition:typedef struct Complex{ double x;double y;} Complex;Then, two access methods are required, the input and output functions whichdetermine how the datatype appears as a string:Complex* complex_in(char *str){ double x,y;Complex *result; 4

www.manaraa.com

if(sscanf(str," (%lf, %lf)", &x, &y) !=2){ elog(WARN,"complex_in: error in parsing");return null}result = (Complex *)palloc(sizeof(Complex));result->x = x;result->y = y;return result;}char* complex_out(Complex *complex){ char *result;if(complex==NULL) return NULL;result = (char*) palloc(60);sprintf(result, "(%g,%g)",complex->x,complex->y);return result;} Now the really exciting part is how to take these de�nitions and make themusable by a Postgres95 user:create function complex_in(opaque)returns complexas '/home/postgres/basetypes/complex.so'language 'c';create function complex_out(complex)returns opaqueas '/home/postgres/basetypes/complex.so'language 'c';create type complex{ internallenght = 16,input = complex_in,output = complex_out};Finally, if the datatype complex is now used in a Postgres95 statement, thelibrary is dynamically loaded into Postgres95.
5

www.manaraa.com

3.2 A general-purpose programming language3.2.1 Programming within a databaseSQL lacks especially one property: It is not computationally complete. Andeven though the new SQL standard might once again cover some distance to-wards computational completeness, it always seems to look as a patch and SQLloses more and more of its elegance (if it ever possessed any elegance. . .).Thus, a computationally complete programming language is one of the require-ments for an up-to-date database system, which ORDBMSs claim to be. Thenext section on complex datatypes shows that the introduction of a more com-plex type system increases the need for a multi-purpose programming language.In general, several things have to be noticed:Procedures Procedures are independent programming constructs which arenot bound to any datatype and can be used to provide general func-tionality, e.g. as triggers (which requires some additonal construct thatobserves changes on the database), intelligent interfaces (in cases wheresimple views don't su�ce), for creating reports, etc.Operators, methods Operators and methods are closely bound to a datatype.An operator can be a method for the increment of some tuple in a spe-cial sense, for the comparison, addition, multiplication of datatypes etc.Methods might be used to change the internal state of an instance of adatatype.Implementation issues It might look easiest to create an open database pro-gramming interface that allows the creation of additional modules for thedatabase, e.g. access structures for new datatypes, interfaces to storagemediums etc. This solution brings along severe security problems and theusage of an interface like that must be considered very well. Perhaps itshould only be used where the trade-o� between security and performanceclearly shows the need for such a grave intervention into the database sys-tem.In all other (and probably in most) cases, it is su�cient to provide abuilt-in programming language like Oracle's PL/SQL. This programminglanguage can perform any tasks like adding operators to the system, cre-ate multi-purpose triggers, all that seems to be necessary in the contextof server-side programming.3.2.2 Oracle's PL/SQLSeveral reasons led Oracle to ship a oracle-intern programming language alreadywith Version 6: When performing complex database operations, it was desiredto do this without going back to the client after each SQL query. It shouldbe possible to perform a whole complex transaction in the database (and, asthis reduces tra�c between server and client, client/server applications wouldperform better). Furthermore, it was Oracle's purpose to create a programming6

www.manaraa.com

language that is used within the whole framework of Oracle's products2.There exist several kinds of PL/SQL programmes:� 4GL client programming (e.g. Oracle Forms, ReportWriter, Graphicsetc.).� anonymous blocks which are loaded into Oracle via query-like statements.� programmes which are permanently stored within Oracle.� triggers, which are activated by a DML operation.A PL/SQL programme consists of three parts:declaration That is the place for all kinds of declarations: Variables, con-stants, cursors, user-de�ned exceptions.execution Here is the "real" code, loops, etc.exceptions At least one surprise: PL/SQL includes exception handling rou-tines to catch errors during the execution of the code.Examples about PL/SQL will be provided in the next section, in combinationwith the example on complex datatypes.3.3 Complex objectsComplex objects, another distinguishing feature of ORDBMSs, provide thefollowing: �rstly, complex types which consist of several base types or othercomplex types (related to C's struct) and, secondly, there is the concept ofcollection types: carry together elements of the same or even di�erent types ina bag, set, list or whatever.The idea of extending relational databases in this way was developed not lateafter E. G. Codd (see (C70)) gave birth to relational databases at the begin-ning of the 1970. Makinouchi (M77) was one of the �rst to present an ideaon relations which was called "non �rst normal form relation"3. As the namealready suggests, the non �rst normal form model4 allows the violation of the�rst normal form principle:All attributes of a relation have an atomic domain.A domain D is atomic i� all elements of D are indivisible units.Concerning ORDBMSs, the idea of NF 2 (non �rst normal form) is interpretedin two ways.2see (S93) for more information on PL/SQL and Oracle7 in general3see (C79), (SS86)4see (KE97) p. 157/158, 370/371, (SKS97) p. 275-291, (KM94) p. 135-1507

www.manaraa.com

father mother children petsJohann Antoinette Jean EzllaJean Elisabeth fTony,Christiang fYiek,OakgTable 2: Set-based attributes in a relationfather mother children petsJohann Antoinette Jean EzllaJean Elisabeth Tony YiekJean Elisabeth Christian YiekJean Elisabeth Tony OakJean Elisabeth Christian OakTable 3: Set-based attributes converted into a �rst normal form relation3.3.1 Set-based datatypesAn attribute of a relation can now be a set of entries (see table 2). This caneasily be simpli�ed to �t again into the �rst normal form relational model (seetable 3).Thus, a �rst approach to the de�nition of relations in ORDBMSs might be:Attributes of a relation in OR-from are atomic or set valued.To give a more formal de�nition:A domain D is relationor-valued (written: Dor) i�Dor = DiDor = 2DorDi : basic domains consisting of atoms ("base types")A relation R is in OR-form (written: Ror) i�Ror � Dor1 � : : : �DornBe aware: This is just "syntactic sugar", as table 2 and 3 showed. Any rela-tional database is able to model this extended de�nition of domains. In additionto the way shown above, a second table can be created that holds the set ele-ments. Then, a join is needed to e.g. get all pets that belong to the parents.The "cleaner" way is of course to analyze any multi-valued dependencies andget into normalization etc. But that is not the topic of this paper.3.3.2 Compound datatypesIn addition to sets, a desired ability is to create new datatypes out of alreadyexisting types, the already known struct concepts of programming languageslike C.There are two possibilities to realize this concept:8

www.manaraa.com

create type Workstation(name varchar2(20),software setof(varchar2(20))); Figure 1: De�nition of a complex datatypecreate table SalesRep(PID number(8),name varchar2(20),area varchar2(20),workstation WorkStation); Figure 2: De�nition of a table with a complex datatype� Creation of new datatypes and then using this new datatypes as an at-tribute in a relation. Or it might be possible to create a table whose typeis a complex datatype.� Adding the possibility to create nested tables within a table.The �rst approach should be pre�ered as it provides the ability to reuse al-ready de�ned datatypes. In addition, this concept is more exible in a numberof other ways (allows inheritance, creation of operators etc.).Let us consider an example to illustrate the idea of complex types. Firstly,a new datatype is de�ned (�gure 1). This datatype is now used as a type in arelation in OR form (�gure 2, table 4). Once again, this relation in OR formcan be converted into relations which su�ce the requirements of the "normal"relational model (table 5, 6).So the de�nition of domains and relations in OR form from above can be ex-tended in the following way:A domain D is relationor-valued (written: Dor) i�Dor = DiDor = 2DorDor = Dor1 � : : :�DornDi : basic domains consisting of atomsPID name area workstation.name workstation.software17091974 Radek Wisconsin karl f Powerpoint, Word g05071975 Bucharin Oregon rosa f Doom g24121997 Jo�e Texas paul f Freelance gTable 4: Complex attributes used in the relation SalesRep9

www.manaraa.com

PID name area CID17091974 Radek Wisconsin 1205071975 Bucharin Oregon 1424121997 Jo�e Texas 16Table 5: NF relation PersonCID name software12 karl Powerpoint12 karl Word14 rosa Doom16 paul FreelanceTable 6: NF relation WorkStationA relation R is in OR-form (written: Ror) i�Ror � Dor1 � : : : �Dorn3.3.3 Implementation issuesSome aspects have to be considered when thinking about extending an existingDBMS to obtain ORDBMS features:Extenstions to SQL The query, data manipulation and data de�nition lan-guage of a database system has to provide syntactic constructs to allowthe above introduced extensions:� The well-known dot-operator might be used to access data of a com-plex datatype:select *from SalesRep swhere s.workstation.name='karl';� As already shown above, an operator setof(A) might be implementedto create a set of type A. Further extensions might be conceivable tobe able to create list, arrays etc.� Furthermore, a construct is needed to de�ne new complex datatypes.It might look like the already used constructor of �gure 1.Operators and methods One problem remains unsolved so far: It is not pos-sible to de�ne operators on the newly created datatypes which is crucialwhen quering for those datatypes. Thus, some kind of programming lan-guage has to be added to the database. This issue was discussed in oneof the previous section of this paper. In addition, a syntactic construct isneeded to bind a method or an operator to a datatype.10

www.manaraa.com

Search structures Especially when dealing withmulti-dimensional data (whichcan of course easily be modelled by using the approach of creating com-plex objects), already implemented search structures like the B-tree mightno longer be optimal. Thus, it is desired to allow the implementation ofmore e�cient multi-dimensional search structures if necessary. This risesagain the questions about how to integrate such structures (linking ofadditional libraries, database programming language, etc.).3.4 Oracle8's way to complex datatypesFirst of all, let me cite the Oracle Server Concepts manual ((OC97a), (OC97b)),chapter 10:Relational database management systems (RDBMSs) are the stan-dard tool for managing business data. They provide fast, e�cient,and completely reliable access to huge amounts of data for millionsof businesses around the world every day.The objects option makes Oracle an object-relational database man-agement system (ORDBMS), which means that users can de�ne ad-ditional kinds of data-specifying both the structure of the data andthe ways of operating on it-and use these types within the relationalmodel. This approach adds value to the data stored in a database.Oracle with the objects option stores structured business data inits natural form and allows applications to retrieve it that way. Forthat reason it works e�ciently with applications developed usingobject-oriented programming techniques.Oracle's support for user-de�ned datatypes makes it easier for ap-plication developers to work with complex data like images, audio,and video.3.4.1 A little bit of backgroundEvery user of Oracle owns a so called schema, which has the name of the userand contains the schema objects (tables, triggers etc.). The so-called Objectoptions now enables the user to create complex and set-valued datatypes, to-gether with operators, views etc. within its schema.Oracle o�ers other add-ons for the basic database systems, e.g. the alreadymentioned video option or a package especially for geographical informationsystems.3.4.2 An example databaseIn this section, I will present examples to demonstrate the features of Oracle8in the realm of complex datatypes. Linguistics, especially syntax and lexicalresearch provides a nice environment for an example database5. Linguistic the-ories like HPSG and DATR are systems that strongly base on type theory andinheritance. Here, I will concentrate on the modelling of a lexicon component5The example is partially based on ideas of (PS87).11

www.manaraa.com

which serves to store words with their di�erent, linguistically relevant featuresinto an ORDBMS.A type lexical entry consists of several subtypes which correspond to di�er-ent linguistic areas: Information should be stored about pronunciation (phono-logical/phonetic information), the meaning (semantic information) and aboutthe category (syntactic information) of the word.phonology/phonetics Every word consists of a ordered set of so-called phonemesrepresenting the pronunciation of the word. Phonemes consist of a set offeatures describing them, thus they can be nicely modelled by a complexdatatype (in general, there are of course more than these two phonemes)6.create or replace type Phoneme as object(dental number(1),labial number(1));/The pronunciation of a word is modelled as a set of phonemes. Oracle8provides two means to model sets:� Firstly, there are so-called VARRAYs. This is an ordered set of dataelements. All elements are of the same type, each element has anindex which corresponds to the elements position in the array. Or-acle8's arrays are called VARRAYs because they're allowed to be ofvariable size, but even though, a maximum size has to be speci�edwhen declaring the VARRAY.� Secondly, nested tables can be used to model a set: It is an unorderedset of data elements, all of the same type.Here, I use a VARRAY to model the set7:create or replace type PhonemeSet as VARRAY(25) of Phoneme;/This shows one shortcoming: An intermediate datatype has to be createdwhen using sets, it is not possible to use a syntax like:[..]Pronunciation setOf(Phoneme),[..]6�lename: crtPhoneme.sql7crtPhonemeSet.sql 12

www.manaraa.com

Together with this datatypes, the type Phonetics can be de�ned8:create or replace type Phonetics as object(sound bfile,pronunciation PhonemeSet);/b�le is a datatype that represents an external �le. A directory has tobe made available to Oracle8 where �les are then stored and handled asLOBs (Large OBjects). The actual b�le column in the database is justassigned a locator to the binary �le.semantics The type semantics contains information about the meaning of aword. For several purposes, it is important to know about the relationof one word to another in the context of meaning. E.g. binocular hasde�nitley a closer relation to eyeglasses than to �re department. Thus,there exist so-called semantic nets which model this relation by buildinga net above all entries of a lexicon. This is modelled by a datatypeReference9:create or replace type Reference as object(weight number(3),wref REF Word);/REFs provide a means to access elements of another table directly, whichwas done by using foreign keys in the relational model. Oracle assignsa unique, immutable identi�er to every row object and lets the user usethis reference as the REF built-in datatype. Several states of a referencehave to be distinguished:scoped REFs References that are constrained to only point to a speci-�ed table are called scoped REFs.dangling REFs This is just the same as already known from program-ming languages: The row a REF is pointing to can be deleted andthus become unavailable. Then, the reference is dangling . Oracle8provides a method is dangling to allow testing for dangling refer-ences.8crtPhonetics.sql9crtReference.sql
13

www.manaraa.com

dereferencing REFs Accessing the object referred to by the REF iscalled dereferencing the reference. Oracle8 provides a deref opera-tor, that returns a null object if the reference is dangling. In addition,Oracle8 o�ers implicit dereferencing as well:x.manager.namey.name, where y=deref(x.manager)There is one important remark on REFs: They can only be usedand applied if working with so-called object tables. This is just toremember for now. Another part of this text will be concerned withobject tables.Once again, a set is needed to represent the relations to other words. Thistime, it does not have to be ordered, thus we can use Oracle8's secondapproach to set-valued attributes which is called nested table10.create or replace type ReferenceSet as table of Reference;/Then, the �nal subtype for semantic content can be de�ned. This typecontains a function that serves for comparing instances of the type se-mantics. A second function was created which returns the word that isstrongest related to the actual word11.create or replace type Semantics as object(content varchar2(30),references ReferenceSet,member function refs return varchar2,pragma restrict_references(refs,wnds,wnps),map member function ret_value return varchar2,pragma restrict_references(ret_value, wnds, wnps, rnps, rnds));/syntax Finally, syntactic information about the word has to be stored. AsOracle8 does not provide a construct for inheritance, I only concentrateon nouns here.The de�nition of the syntax subtype12:create or replace type Syntax as object10crtReferenceSet.sql11crtSemantics.sql12crtSyntax.sql 14

www.manaraa.com

(plural_end varchar2(5),genitiv_end varchar2(5));/So �nally, the datatype word can be created13:create or replace type Word as object(syn Syntax,sem Semantics,phon Phonetics,letters varchar2(30));/Oracle8 o�ers the possibility to de�ne comparison operators, resp. map methodsand order methods. Map methods are quite simple: They use Oracle8's abilityto compare built-in types by making the user de�ne a method that providesdatatypes that Oracle8 can compare. In this case, I just return the actual word,that is represented by an instance of the datatype. The other method (ordermethods) requires more work: This methods use their own, programmed logicto compare two instances of the datatype and then might return -1, 0, +1 toindicate that one instance is smaller, equal or bigger than the other. If noneof the two possible methods are de�ne, Oracle cannot determine enequality.At least, there is a way Oracle8 attempts to determine equality: This is donejust by comparing the attributes of the datatype. In addition, I implementeda second PL/SQL method, just to show a little bit of the functionality of thelanguage14.create or replace type body Semantics asmember function refs return varchar2isref_table ReferenceSet;counter number;best number:=0;best_word varchar2(20) := 'no connections';beginif self.references.count>0 thenfor counter in 1..self.references.count loopif best<self.references(counter).weight thenbest:=self.references(counter).weight;select l.letters into best_wordfrom lexicon l13crtWord.sql14crtSemanticsBody.sql 15

www.manaraa.com

where ref(l)=self.references(counter).wref;end if;end loop;end if;return best_word;end refs;map member function ret_value return varchar2 isbeginreturn content;end ret_value;end;/Below is the script used for creating the whole set of types. First of all, itdeletes any old de�nitions of types, then it calls the above de�ned scripts tocreate the types and their bodies. Finally, it creates a log table, inserts a �rstentry and �nally prints out Oracle8's error table to show the user any errorswhich occured during the type de�nition steps15.@dropAll@phonetics/crtPhoneme@phonetics/crtPhonemeSet@phonetics/crtPhoneticscreate or replace type Word/@semantics/crtReference@semantics/crtReferenceSet@semantics/crtSemantics@syntax/crtSyntax@crtWord@crtLexicon@semantics/crtSemanticsBodycreate table Lexicon_log(when date,text varchar2(30));insert into Lexicon_log values15crtAll.sql 16

www.manaraa.com

(sysdate,'creation of object table');select * from Lexicon_log;select * from user_errors;quit;Firstly, an incomplete type Word was created, as it would cause a compilationerror to create Reference without the type Word already existing.Just the last script is missing: Normaly, a table would be created consisting ofthe desired types. But as REFs can only be used when working with objecttable, another new feature of Oracle8 has to be explained and used.Object tables are not too surprising. With them, the user is able to create atable that just comprises one datatype, and they o�er the possibility to usereferences. An object table is created this way16:create table Lexicon of Wordnested table sem.references store as references_table;The second line is necessary to create the nested table of the semantic subtypewhich contains the references to other words.Now the newly created table has to be populated. This is one way to do it:delete from lexicon;insert into Lexicon values(Word(Syntax('-e',''),Semantics('FahrzeugLand',ReferenceSet()),Phonetics(NULL,PhonemeSet()),'Mercedes'));insert into Lexicon values(Word(Syntax('-s','-s'),Semantics('FahrzeugLand',ReferenceSet()),Phonetics(NULL,PhonemeSet(Phoneme(1,2),Phoneme(1,2),Phoneme(2,1))),'BMW'));16crtLexicon.sql 17

www.manaraa.com

insert into the(select l.sem.referencesfrom Lexicon lwhere l.letters='BMW')select 2,ref(l)from Lexicon lwhere l.letters='Mercedes';insert into the(select l.sem.referencesfrom Lexicon lwhere l.letters='BMW')select 20,ref(l)from Lexicon lwhere l.letters='BMW';quit;Especially the last SQL statement is interesting: First, the attribute of the ta-ble Lexicon is selected, in which an item should be inserted. Then, the secondselect decides which entry of the Lexicon quali�es. A reference to the qualifyingentry is then created and is inserted together with a value denoting the strengthof the semantic reference.These are examples of some queries on the lexicon:� This query just prints the words in the lexicon.select l.lettersfrom lexicon l;quit;� This query is a little bit more complicated. In the nested query, it se-lects the references of the nested table of the lexicon entry for the word'BMW'. Then, the where clause selects the entries of the lexicon whichare referenced by the reference entry in the nested query.select rt.weight,l.letters, l.sem.contentfrom the (select l.sem.referencesfrom lexicon lwhere l.letters='BMW') rt,lexicon lwhere ref(l)=rt.wref;quit; 18

www.manaraa.com

This is the result of the query:WEIGHT LETTERS SEM.CONTENT---------- ------------------- ---------------------2 Mercedes FahrzeugLand20 BMW FahrzeugLandThis would be the result, if the where clause of the outer query is deleted:WEIGHT LETTERS SEM.CONTENT---------- -------------------- --------------------2 Mercedes FahrzeugLand20 Mercedes FahrzeugLand2 BMW FahrzeugLand20 BMW FahrzeugLand� And here is one last query. In the inner nested query it selects all semanticreferences of the entry of word 'BMW'. Then, from those entries, it selectsall entries that have a value bigger than 10. Then it takes the referencesof those values and queries for the word entry (the letters attribute) ofthose references.select l.lettersfrom lexicon lwhere ref(l)=(select r.wreffrom the (select l.sem.referencesfrom lexicon lwhere l.letters='BMW') rwhere r.weight>10);quit;Now follow some little PL/SQL procedures:� First of all: anonymous blocks. They can be seen as a special kind oftransaction. The source code is sent to the Oracle server and then exe-cuted there. This is especially interesting when transactions are requiredwhich cannot be expressed in "normal" SQL. With the help of PL/SQL,those transactions can be performed completely at the server, whereaswithout PL/SQL, data would have to be sent between server and clientto perform the parts which are not possible in SQL in a client-side appli-cation. This PL/SQL code just inserts some data into the lexicon. It isquite similar to the SQL code above that inserts values into lexicon. Justnote that there is a short exception handling routine at the end of theanonymous block. 19

www.manaraa.com

begininsert into Lexicon values(Word(Syntax('-s','-s'),Semantics('FahrzeugLand',ReferenceSet()),Phonetics(NULL,PhonemeSet(Phoneme(1,1),Phoneme(1,2),Phoneme(1,1),Phoneme(1,2))),'Auto'));insert into the(select l.sem.referencesfrom Lexicon lwhere l.letters='Auto')select 14,ref(l)from Lexicon lwhere l.letters='BMW';insert into the(select l.sem.referencesfrom Lexicon lwhere l.letters='Auto')select 10,ref(l)from Lexicon lwhere l.letters='Mercedes';exceptionwhen others thenrollback;insert into lexicon_log values(sysdate,'could not insert word Auto');end;/commit;select l.letters from lexicon l;select * from lexicon_log;quit; 20

www.manaraa.com

� It is of course possible to call any methods of datatypes, this little queryprints the word and its strongest reference:select l.letters,l.sem.refs()from lexicon l;quit;� And �nally, a stored procedure is created with this script:create or replace procedure pronounce(word varchar2)isphon_set PhonemeSet;act_phon Phoneme;max_phon number;beginselect l.phon.pronunciation into phon_setfrom lexicon lwhere l.letters=word;max_phon := phon_set.count;act_phon := phon_set(1);-- send phoneme-set to speakers...exceptionwhen others theninsert into lexicon_log values(sysdate,'procedure pronounce failed');end;/quit;Stored procedures are executed this way:execute pronounce('BMW');3.5 InheritanceInheritance is a powerfull means for modelling. Inheritance is mainly regardedin the context of datatype inheritance, but can also be viewed as inheritance oftables with consequences on the data manipulation language.3.5.1 Domain inheritanceData inheritance is another extension to ORDBMSs' type system. So far, typesin ORDBMSs comprise:� built-in base types� user-de�ned base types� complex types (compositional, set-valued)21

www.manaraa.com

Datatypes and datatype inheritance can be seen from di�erent view points: Asalready discussed in the section about complex datatypes, there is the possibil-ity of creating a table with nested relations instead of creating datatypes thatare then used in the table. This concept can be used here as well: Instead ofcreating datatypes and then applying inheritance, a table might be created andthen another table, which inherits the properties of the �rst table.The other case is what we are used to: Having datatypes, creating new onesas shown in the sections above and then adding inheritance as another way ofcreating new datatypes.In both cases, there are some interesting consequences: Assuming a table hier-archy, where a table manager is a subtype of table employee. Then, when doingan update of table employee, we might want to do the update on all subtablesof table employee as well. Thus, a key word for an inheritance update might bedesirable. Something similar might be the case when thinking about datatypesand their operators. If applicable, the operators of a type should be inheritedby the subtype as well, thus allowing code reuse.As both of the above mentioned approaches to inheritance might be desired ina database context, the question on how to generalize this idea arises. The ap-proach that (D95) uses is not to de�ne inheritance on the basis of datatypes ortables but on the basis of the domains of datatypes resp. tables. The questionwether to use tables or datatypes to get a physical implementation can then bedecided by the programmer.sub/superdomains Let A,B be OR-valued domains.A inherits from B if the set of attributes of A is a superset of the attributesof B.B is then said to be a superdomain of A.A is then said to be a subdomain of B.operators of a domain Let Op be an operator of some domain A. Every sub-domain of A inherits the operator.Considering the paramters of the operator, the following has to be re-marked:If instead of a parameter of domain B a parameter of a subdomain of Bis handed over to the operator, the operator can perform its job withoutany problems.The inheritance relation within a database can be visualized by using a graph.In general, an inheritance graph is always a DAG, sometimes, it might evenbe desired to force only one inheritance graph for the whole system (see Java),which assures a common structure for all objects of the inheritance hierarchy.3.5.2 Inheritance in Postgres95As Oracle does not provide inheritance, here is once again an example usingPostgres95: 22

www.manaraa.com

Inheritance is implemented in a rather straight forward way here17:create table cities(name text,population float,altitude int);create table captials(state text) inherits (cities);In Postgres, a type can inherit from one or more other types, and a query canreference either all instances of a class or all instances of a class plus all of itsdescendants. A symbol * is used to indicate that the actual type of the queryand its subtypes should be queried:select c.name, c.altitudefrom cities cwhere c.altitude > 500;select c.name, c.altitudefrom cities* cwhere c.altitude > 500;4 The future of ORDBMSsIn this seminar paper, I provided an overview concerning the four new featuresthat ORDBMSs are said to provide: base datatype extension, programminglanguage, complex datatypes, inheritance. These extensions can o�er a frame-work for easier and better modelling of database applications. Even though, ithas yet to be proved that those new features are usable without heavy loss ofperformance. In addition, the question has to be addressed if a change to a realobject-oriented database system would be possible and even more reasonable.The future will show if the new name "object-relational" and the implied newlevel in data processing is justi�ed or if it was just an idea of marketing, ifthe object-relational features just remain as a nice add-on to relational sys-tems which does not prove to be very helpfull in real life or if object-relationalfeatures are a real added-value to database systems that pays o�.17text is a variable length ASCII code string in Postgres95
23

www.manaraa.com

5 Addendum5.1 External proceduresPL/SQL does not perform good when used as a programming language fornumerical computation. Oracle8 now o�ers the possibility of calling external Cprocedures to use the execution speed of this language.Those external procedures have to be compiled into a library that can be linkeddynamically (DLLs,SOs). The procedures are then executed in an own addressspace to safeguard the database system. This is an example of how to registeran external library and procedure for the use within Oracle8:create library c_utils as '/oracle/dll/utils.so';create function really_heavy_computation(x binary_integer, y binary_integer)return binary_integeras externalexternal library c_utilsname calculatelanguage c;And this is how to call an external function from PL/SQL:create function fourier (x binary_integer)return binary_integerasz binary_integer :=10;result binary_integer;beginresult := really_heavy_computation(x,z);result := result + x;return result;end;PL/SQL provides new datatypes for the data exchange to external procedures(like binary integer) and an extended parameter system to provide more secu-rity for parameter exchange.This new feature of Oracle8 o�ers interesting new possibilities in database pro-gramming. It will be interesting to see how this feature is extended in the future(multi-threaded programming, IPC etc.).5.2 Object viewsIn addition to the new possiblities of the Object Option, Oracle provides ameans to add an object layer to an already existing relational database: objectviews. Those views allow to de�ne a view that behaves like an object table ontop of an already existing relational table:24

www.manaraa.com

drop view OVlex;drop table Lexicon2;create table Lexicon2(id number,syn Syntax,sem Semantics,phon Phonetics,letters varchar2(30))nested table sem.references store as references_table2;insert into Lexicon2 values(1,NULL,NULL,NULL,'Auto');insert into Lexicon2 values(2,NULL,NULL,NULL,'Helikopter');insert into Lexicon2 values(3,NULL,NULL,NULL,'Pfanne');create view OVlex of Wordwith object oid (letters)asselect l.syn,l.sem,l.phon,l.lettersfrom Lexicon2 l;quit;References[C70] Codd, E. G. (1970). A relational model for large shared data banks. Com-munications of the ACM, 13(6), p. 377-387[C79] Codd, E. G. (1979). Extending the database relational model to capturemore meaning. ACM TODS 4[CLC95] Chung, J.-Y., Lin, Y.-J., Chang, D. T. (1995). Ob-jects and relational databases. OOPSLA '95 Workshop,http://www.eng.uci.edu/ cpeng/jychung/oopsla95-workshop.html[D95] Date, C. J. (1995). Relational database writings, 1991-1994. Addison-Wesley, Reading/Mass.[KE97] Kemper, A., Eickler, A. (1997). Datenbanksysteme. Oldenbourg, M�un-chen, ST 271 K32 D2[KM94] Kemper, A., Moerkotte, G. (1994). Object-oriented database manage-ment. Prentice Hall, Englewood Cli�s New Jersey, ST 271 K32[M77] Makinouchi, A. (1977). A consideration of normal form on not-necessarily normalized relations in the relational data model. Proceedingsof the international converence on very large data bases, p. 447-453[OC97a] Oracle Co. (1997).Oracle8 Server Concepts Vol. 1. 811/ST 271063(8)-4,1 25

www.manaraa.com

[OC97b] Oracle Co. (1997).Oracle8 Server Concepts Vol. 2. 811/ST 271063(8)-4,2[PS87] Pollard, C. J., Sag, I. A. (1987). Information-based syntax and seman-tics. CSLI lecture notes, no. 13[PG95] Yu, A., Chen, J. et al. (1995). The Postgres95 User Manual. (comeswith Postgres95 distribution)[S93] St�uerner, G�unther (1993).Oracle7 - die verteilte semantische Datenbank.dbms publishing, Weissach[SKS97] Silberschatz, A., Korth, H. F., Sudarshan, S. (1997). Database systemconcepts. McGraw-Hill, New York, NY, ST 271 K85[SM96] Stonebraker, M., Moore, D. (1996). Object-relational DBMSs. MorganKaufmann, San Francisco, Calif., ST 271 S881 01[SQL92] (1992). Database language SQL, ANSI X3,135-1992. American Na-tional Standards Instituts, New York[SS86] Scheck, H. J., Scholl, M. H. (1986). The relational model with relation-valued attributes. Information System 11(2), p. 137-147

26

