Object-relational concepts in database management
systems

Gerald Anleitner
Seminar on applications and concepts of database systems

12th February 1998

Contents
1 Introduction 2
2 What we want 2

3 Object-relational database technology:

a dummies’ guide 3
3.1 Base typeextension . .. ... ... ... 0oL 3
3.1.1 Thedesire. . . . . .. .. .. ... ... 3
3.1.2  Postgres95’s implementation of base datatype extension . 4

3.2 A general-purpose programming language . . . . ... ... ... 6
3.2.1 Programming within a database . .. ... ... ... .. 6

322 Oracle’'s PL/SQL . . . ... ... ... .. ... . ... 6

3.3 Complex objects . . . .. .. ... o 7
3.3.1 Set-based datatypes . . . .. ... .. ... ... 8
3.3.2 Compound datatypes . . . ... ... ... ... ..... 8
3.3.3 Implementation issues . . . . . .. .. .. ..., 10

3.4 Oracle8’s way to complex datatypes . . .. .. .. ... ... .. 11
3.4.1 A little bit of background . . . . . .. ... .. ... ... 11
3.4.2 An example database . .. ... ... ... ... ..... 11

3.5 Inmheritance . . . . . ... .. 21
3.5.1 Domain inheritance . . . . ... ... ... ... ... .. 21
3.5.2 Inheritance in Postgres95 . . . . . .. ... ... ... .. 22

4 The future of ORDBMSs 23
5 Addendum 24
5.1 External procedures . . . .. .. ... ... ... 0oL 24
5.2 Object views . . . . . . . . 24

www.manaraa.com




1 Introduction

During the last decade, the object-oriented approach got more and more ac-
cepted as the way to model and to program in computer industry and sci-
ence. Thus, it seems only natural that the wave of OO influences the world of
databases as well.

The relational model dominates the world of databases for quite a long time
now. But OO creates movement in this scene: Object-oriented databases ap-
pear and the big vendors like Informix or Oracle sell their products as object-
relational database management systems. The following is an introduction to
this new "style” of database management systems.

2 What we want

The already mentioned rise of object-oriented methodology and technology, the
growing demand and usage of multimedia, compound documents and computer-
added design applications creates more and more pressure on database systems
to support these new technologies. As (CLC95) state, if relational databases
can adapt to this new challenge, they might well stay in business.

e Multimedia and related technologies have formed new datatypes that
are currently not represented in relational database management sys-
tems. It would be desirable to extend an existing DBMS with new base
datatypes. And this means: Not only adding a new type like external
file, but adding real support for these datatypes (e.g. methods that
send video streams to clients, that compare images, operators to reason
on the datatype etc.).

e An object-oriented approach requires in particular the possibility of defin-
ing new, complex datatypes and, in addition, the possibility of establishing
a hierarchical order on the defined datatypes (inheritance etc.).

e The database administrator or programmer must be able to create new
procedures within the database to allow comparison or other operations on
the datatypes. This enables the processing of more complex transactions,
triggers, adds the possibility to create an intelligent database.

So what can/must be done to make RDBMSs ready for the challenge? There
are two main approaches:

¢ Adding object extensions to the standard relational model. This is the
approach this paper focuses on.

¢ Adding an object layer on top of the relational database.
This object layer (another word might be ”wrapper”) simulates an object-
oriented interface on top of a relational database. It might as well be seen
as some kind of middleware.

www.manaraa.com



datatype | comment max value
varchar2 | variable size character string 4000 bytes
nvarchar2 | variable size, natioanl character set | 4000 bytes
char fixed length character set 2000 bytes
nchar fixed length national character set | 2000 bytes
number integer or real [38],]-84 - 127]
date type for date and time up to 31/12/4712
long character string 231 — 1 bytes
raw binary data 2000 bytes
long raw | alpha-numeric 2GB

rowid unique address of a row in its table

clob character large object 4 GB

nclob national ... 4 GB

blob binary large object 4 GB

bfile locator to external filesystem 4 GB

Table 1: Oracle8’s base datatypes

In the following sections, I will provide a deeper introduction to the above men-
tioned requirements for object-relational database management systems (base
datatype definition, complex datatypes, inheritance, programming) together
with examples from Oracle8 and Postgres95.

3 Object-relational database technology:
a dummies’ guide

The term ”object-relational” does not seem to have an exact definition. The
notion of an object-relational database management system (subsequently: OR-
DBMS) in this paper is based on text in (SM96) and (SKS97), enriched with
theoretical thoughts and implementation approaches which the new capabilities
of ORDBMSs might require.

3.1 Base type extension
3.1.1 The desire

According to (SM96), one new feature of ORDBMSs is the possibility of ex-
tending the database system with new base types. First, have a look at the
base datatypes of Oracle8, which claims to be an ORDBMS (see table 1). In
(SQLY2), the corresponding operators for each datatype are precisley defined
and there is no possibility to add new base types to the system'. Oracle§ ex-
tends the standard by providing types like ”external”. The impossibility of
defining new base types is a obvious lack of flexibility.

! Actually, (SQL92) defines even less base datatypes, but normaly, DBMS vendors do not
care too much about the standard. ..

www.manaraa.com



To allow the definition of datatypes, we first have to make sure what we mean
with this, resp. what the user has to do to define a new datatype.

datatype specification A name has to be assigned to the datatype, together
with information about the storage requirements of the datatypes (han-
dling of dynamic size?!). It might be necessary to let the user decide where
instances of the type should be stored: Within the database system, or
by using some kind of external resource.

operators and methods There is no use in defining new database types with-
out any means to reason on them. What is an integer without a sum
operator, without comparison operators, what would SQL be without the
greater-equals operator? Thus, there must be a way to define new oper-
ations on the defined datatypes.

implementation and handling This requires the possibility of dynamically
linking new operators to the database as it would not be adequate to
shut down and start up, or relink, the database each time a new base
type is added. Furthermore, to assure efficient and fast work with new
datatypes, the programmer should be able to create access structures for
new datatypes.
This shows already a dilemma of the base datatype story: Lots of possible
security wholes, as dynamic linking can add problems when new code is
not ”"clean”, external storage mediums which are not controlled by the
database can cause problems, not to think about many errors that the
code of the programmed operators can comprise.
It is quite interesting that Oracle8 allows the usage of external procedures.
A little introduction of this functionality can be found in the addendum.

3.1.2 Postgres95’s implementation of base datatype extension

As Oracle8 does not allow the creation of base datatypes, I show an example
using Postgres95 here (see (PG95)).
First of all, C-code has to be written. The actual type definition:

typedef struct Complex

{
double x;
double y;
} Complex;

Then, two access methods are required, the input and output functions which
determine how the datatype appears as a string:

Complex* complex_in(char *str)
{

double x,y;

Complex *result;

www.manaraa.com



if(sscanf(str," ( %¥1f, %1f )", &x, &y) !=2)
{
elog(WARN,"complex_in: error in parsing");
return null
}
result = (Complex *)palloc(sizeof (Complex));
result->x = x;
result->y = y;
return result;

char* complex_out (Complex *complex)
{
char *result;
if (complex==NULL) return NULL;
result = (char*) palloc(60);
sprintf (result, "(%g,%g)",complex->x,complex->y) ;
return result;

Now the really exciting part is how to take these definitions and make them
usable by a Postgres95 user:

create function complex_in(opaque)
returns complex
as ’/home/postgres/basetypes/complex.so’
language ’c’;

create function complex_out(complex)
returns opaque
as ’/home/postgres/basetypes/complex.so’
language ’c’;

create type complex

{
internallenght = 16,
input = complex_in,
output = complex_out

};

Finally, if the datatype complex is now used in a Postgres95 statement, the
library is dynamically loaded into Postgres95.

www.manaraa.com




3.2 A general-purpose programming language
3.2.1 Programming within a database

SQL lacks especially one property: It is not computationally complete. And
even though the new SQL standard might once again cover some distance to-
wards computational completeness, it always seems to look as a patch and SQL
loses more and more of its elegance (if it ever possessed any elegance. .. ).
Thus, a computationally complete programming language is one of the require-
ments for an up-to-date database system, which ORDBMSs claim to be. The
next section on complex datatypes shows that the introduction of a more com-
plex type system increases the need for a multi-purpose programming language.
In general, several things have to be noticed:

Procedures Procedures are independent programming constructs which are
not bound to any datatype and can be used to provide general func-
tionality, e.g. as triggers (which requires some additonal construct that
observes changes on the database), intelligent interfaces (in cases where
simple views don’t suffice), for creating reports, etc.

Operators, methods Operators and methods are closely bound to a datatype.
An operator can be a method for the increment of some tuple in a spe-
cial sense, for the comparison, addition, multiplication of datatypes etc.
Methods might be used to change the internal state of an instance of a
datatype.

Implementation issues It might look easiest to create an open database pro-

gramming interface that allows the creation of additional modules for the
database, e.g. access structures for new datatypes, interfaces to storage
mediums etc. This solution brings along severe security problems and the
usage of an interface like that must be considered very well. Perhaps it
should only be used where the trade-off between security and performance
clearly shows the need for such a grave intervention into the database sys-
tem.
In all other (and probably in most) cases, it is sufficient to provide a
built-in programming language like Oracle’s PL/SQL. This programming
language can perform any tasks like adding operators to the system, cre-
ate multi-purpose triggers, all that seems to be necessary in the context
of server-side programming.

3.2.2 Oracle’s PL/SQL

Several reasons led Oracle to ship a oracle-intern programming language already
with Version 6: When performing complex database operations, it was desired
to do this without going back to the client after each SQL query. It should
be possible to perform a whole complex transaction in the database (and, as
this reduces traffic between server and client, client/server applications would
perform better). Furthermore, it was Oracle’s purpose to create a programming

www.manaraa.com



language that is used within the whole framework of Oracle’s products?.
There exist several kinds of PL/SQL programmes:

e 4GL client programming (e.g. Oracle Forms, ReportWriter, Graphics
etc.).

¢ anonymous blocks which are loaded into Oracle via query-like statements.
e programmes which are permanently stored within Oracle.
e triggers, which are activated by a DML operation.

A PL/SQL programme consists of three parts:

declaration That is the place for all kinds of declarations: Variables, con-
stants, cursors, user-defined exceptions.

execution Here is the "real” code, loops, etc.

exceptions At least one surprise: PL/SQL includes exception handling rou-
tines to catch errors during the execution of the code.

Examples about PL/SQL will be provided in the next section, in combination
with the example on complex datatypes.

3.3 Complex objects

Complex objects, another distinguishing feature of ORDBMSs, provide the
following: firstly, complex types which consist of several base types or other
complex types (related to C’s struct) and, secondly, there is the concept of
collection types: carry together elements of the same or even different types in
a bag, set, list or whatever.

The idea of extending relational databases in this way was developed not late
after E. G. Codd (see (C70)) gave birth to relational databases at the begin-
ning of the 1970. Makinouchi (M77) was one of the first to present an idea
on relations which was called "non first normal form relation”?. As the name
already suggests, the non first normal form model* allows the violation of the
first normal form principle:

All attributes of a relation have an atomic domain.
A domain D is atomic iff all elements of D are indivisible units.

Concerning ORDBMSs, the idea of NF? (non first normal form) is interpreted
in two ways.

%see (S93) for more information on PL/SQL and Oracle7 in general
%see (C79), (5986)
isee (KEOT7) p. 157/158, 370/371, (SKSO7) p. 275-291, (KM94) p. 135-150

www.manaraa.com



father | mother children pets

Johann | Antoinette | Jean Ezlla
Jean Elisabeth | {Tony,Christian} | {Yiek,Oak}

Table 2: Set-based attributes in a relation

father | mother children | pets
Johann | Antoinette | Jean Ezlla
Jean Elisabeth | Tony Yiek
Jean Elisabeth | Christian | Yiek
Jean Elisabeth | Tony Oak
Jean Elisabeth | Christian | Oak

Table 3: Set-based attributes converted into a first normal form relation

3.3.1 Set-based datatypes

An attribute of a relation can now be a set of entries (see table 2). This can
easily be simplified to fit again into the first normal form relational model (see
table 3).

Thus, a first approach to the definition of relations in ORDBMSs might be:

Attributes of a relation in OR-from are atomic or set valued.

To give a more formal definition:

A domain D is relation,,-valued (written: D7) iff

D =D,

por — 2'D°’"

D; : basic domains consisting of atoms (”base types”)

A relation R is in OR-form (written: R°") iff
R C DY X ... x DI

Be aware: This is just ”syntactic sugar”, as table 2 and 3 showed. Any rela-
tional database is able to model this extended definition of domains. In addition
to the way shown above, a second table can be created that holds the set ele-
ments. Then, a join is needed to e.g. get all pets that belong to the parents.
The ”cleaner” way is of course to analyze any multi-valued dependencies and
get into normalization etc. But that is not the topic of this paper.

3.3.2 Compound datatypes

In addition to sets, a desired ability is to create new datatypes out of already

existing types, the already known struct concepts of programming languages
like C.
There are two possibilities to realize this concept:

www.manaraa.com



(

name
software

);

create type Workstation

varchar2(20),
setof(varchar2(20))

Figure 1: Definition of a complex datatype

create table SalesRep
(
PID

name

area
workstation

);

number(8),

varchar2(20),
varchar2(20),
WorkStation

Figure 2: Definition of a table with a complex datatype

e Creation of new datatypes and then using this new datatypes as an at-
tribute in a relation. Or it might be possible to create a table whose type
is a complex datatype.

e Adding the possibility to create nested tables within a table.

The first approach should be preffered as it provides the ability to reuse al-
ready defined datatypes. In addition, this concept is more flexible in a number
of other ways (allows inheritance, creation of operators etc.).

Let us consider an example to illustrate the idea of complex types. Firstly,
a new datatype is defined (figure 1). This datatype is now used as a type in a
relation in OR form (figure 2, table 4). Once again, this relation in OR form
can be converted into relations which suffice the requirements of the ”normal”
relational model (table 5, 6).
So the definition of domains and relations in OR form from above can be ex-
tended in the following way:

A domain D is relation,-valued (written: D7) iff

Do = D
por — 2'D°’"

or _ or or
D" =Dy x...x Dy
D; : basic domains consisting of atoms

PID name area workstation.name | workstation.software
17091974 | Radek Wisconsin | karl { Powerpoint, Word }
05071975 | Bucharin | Oregon rosa { Doom }

24121997 | Joffe Texas paul { Freelance }

Table 4: Complex attributes used in the relation SalesRep

www.manaraa.com



PID name area CID
17091974 | Radek Wisconsin | 12
05071975 | Bucharin | Oregon 14
24121997 | Joffe Texas 16

Table 5: NF relation Person

CID | name | software

12 karl Powerpoint
12 karl Word

14 rosa | Doom

16 paul | Freelance

3.3.3

A relation R is in OR-form (written: R°") iff
R CDY x...xDJ

Implementation issues

Table 6: NF relation WorkStation

Some aspects have to be considered when thinking about extending an existing

DBMS to obtain ORDBMS features:

Extenstions to SQL The query, data manipulation and data definition lan-
guage of a database system has to provide syntactic constructs to allow
the above introduced extensions:

e The well-known dot-operator might be used to access data of a com-
plex datatype:

select *

from SalesRep s
where s.workstation.name="karl’;

e As already shown above, an operator setof(A) might be implemented
to create a set of type A. Further extensions might be conceivable to

be able to create list, arrays etc.

e Furthermore, a construct is needed to define new complex datatypes.

It might look like the already used constructor of figure 1.

Operators and methods One problem remains unsolved so far: It is not pos-
sible to define operators on the newly created datatypes which is crucial
when quering for those datatypes. Thus, some kind of programming lan-
guage has to be added to the database. This issue was discussed in one
of the previous section of this paper. In addition, a syntactic construct is

needed to bind a method or an operator to a datatype.

10

www.manaraa.com



Search structures Especially when dealing with multi-dimensional data (which
can of course easily be modelled by using the approach of creating com-
plex objects), already implemented search structures like the B-tree might
no longer be optimal. Thus, it is desired to allow the implementation of
more efficient multi-dimensional search structures if necessary. This rises
again the questions about how to integrate such structures (linking of
additional libraries, database programming language, etc.).

3.4 Oracle8’s way to complex datatypes

First of all, let me cite the Oracle Server Concepts manual ((OC974), (OC97B)),
chapter 10:

Relational database management systems (RDBMSs) are the stan-
dard tool for managing business data. They provide fast, efficient,
and completely reliable access to huge amounts of data for millions
of businesses around the world every day.

The objects option makes Oracle an object-relational database man-
agement system (ORDBMS), which means that users can define ad-
ditional kinds of data-specifying both the structure of the data and
the ways of operating on it-and use these types within the relational
model. This approach adds value to the data stored in a database.
Oracle with the objects option stores structured business data in
its natural form and allows applications to retrieve it that way. For
that reason it works efficiently with applications developed using
object-oriented programming techniques.

Oracle’s support for user-defined datatypes makes it easier for ap-
plication developers to work with complex data like images, audio,
and video.

3.4.1 A little bit of background

Every user of Oracle owns a so called schema, which has the name of the user
and contains the schema objects (tables, triggers etc.). The so-called Object
options now enables the user to create complex and set-valued datatypes, to-
gether with operators, views etc. within its schema.

Oracle offers other add-ons for the basic database systems, e.g. the already
mentioned video option or a package especially for geographical information
systems.

3.4.2 An example database

In this section, I will present examples to demonstrate the features of Oracle8
in the realm of complex datatypes. Linguistics, especially syntax and lexical
research provides a nice environment for an example database®. Linguistic the-
ories like HPSG and DATR are systems that strongly base on type theory and
inheritance. Here, T will concentrate on the modelling of a lexicon component

®The example is partially based on ideas of (PS87).

11

www.manaraa.com



which serves to store words with their different, linguistically relevant features
into an ORDBMS.

A type lexical entry consists of several subtypes which correspond to differ-
ent linguistic areas: Information should be stored about pronunciation (phono-
logical /phonetic information), the meaning (semantic information) and about
the category (syntactic information) of the word.

phonology/phonetics Every word consists of a ordered set of so-called phonemes
representing the pronunciation of the word. Phonemes consist of a set of
features describing them, thus they can be nicely modelled by a complex
datatype (in general, there are of course more than these two phonemes)®.

create or replace type Phoneme as object
(

dental number(1),

labial number (1)
)

The pronunciation of a word is modelled as a set of phonemes. Oracle8
provides two means to model sets:

e Firstly, there are so-called VARRAYs. This is an ordered set of data
elements. All elements are of the same type, each element has an
index which corresponds to the elements position in the array. Or-
acle8’s arrays are called VARRAYs because they're allowed to be of
variable size, but even though, a maximum size has to be specified
when declaring the VARRAY.

e Secondly, nested tables can be used to model a set: It is an unordered
set of data elements, all of the same type.

Here, T use a VARRAY to model the set”:

create or replace type PhonemeSet as VARRAY(25) of Phoneme;
/

This shows one shortcoming: An intermediate datatype has to be created
when using sets, it is not possible to use a syntax like:

[..]
Pronunciation setOf (Phoneme),
[..]

Sfilename: crtPhoneme.sql
"crtPhonemeSet.sql

12

www.manaraa.com



Together with this datatypes, the type Phonetics can be defined®:

create or replace type Phonetics as object
(

sound bfile,

pronunciation PhonemeSet

)

bfile is a datatype that represents an external file. A directory has to
be made available to Oracle8 where files are then stored and handled as
LOBs (Large OBjects). The actual bfile column in the database is just
assigned a locator to the binary file.

semantics The type semantics contains information about the meaning of a
word. For several purposes, it is important to know about the relation
of one word to another in the context of meaning. E.g. binocular has
definitley a closer relation to eyeglasses than to fire department. Thus,
there exist so-called semantic nets which model this relation by building
a net above all entries of a lexicon. This is modelled by a datatype
Reference’:

create or replace type Reference as object
(

weight number(3),

wref REF Word
)

REF's provide a means to access elements of another table directly, which
was done by using foreign keys in the relational model. Oracle assigns
a unique, immutable identifier to every row object and lets the user use
this reference as the REF built-in datatype. Several states of a reference
have to be distinguished:

scoped REFs References that are constrained to only point to a speci-
fied table are called scoped REFs.

dangling REFs This is just the same as already known from program-
ming languages: The row a REF is pointing to can be deleted and
thus become unavailable. Then, the reference is dangling. Oracle8
provides a method is_dangling to allow testing for dangling refer-
ences.

8crtPhonetics.sql
crtReference.sql

13

www.manaraa.com



dereferencing REFs Accessing the object referred to by the REF is
called dereferencing the reference. Oracle8 provides a deref opera-
tor, that returns a null object if the reference is dangling. In addition,
Oracle8 offers implicit dereferencing as well:

X.manager .name
y.name, where y=deref (x.manager)

There is one important remark on REFs: They can only be used
and applied if working with so-called object tables. This is just to
remember for now. Another part of this text will be concerned with
object tables.

Once again, a set is needed to represent the relations to other words. This
time, it does not have to be ordered, thus we can use Oracle8’s second
approach to set-valued attributes which is called nested table'©.

create or replace type ReferenceSet as table of Reference;

/

Then, the final subtype for semantic content can be defined. This type
contains a function that serves for comparing instances of the type se-
mantics. A second function was created which returns the word that is
strongest related to the actual word'!.

create or replace type Semantics as object
(

content varchar2(30),

references ReferenceSet,

member function refs return varchar?2,

pragma restrict_references

(refs,wnds,wnps),

map member function ret_value return varchar?2,
pragma restrict_references

(ret_value, wnds, wnps, rnps, rnds)

)
/

syntax Finally, syntactic information about the word has to be stored. As
Oracle8 does not provide a construct for inheritance, I only concentrate
on nouns here.
The definition of the syntax subtype'?:

create or replace type Syntax as object

10crtReferenceSet.sql
HertSemantics.sql
12crtSyntax.sqgl

14

www.manaraa.com



(
plural_end varchar2(5),
genitiv_end varchar2(5)

)

So finally, the datatype word can be created'3:

create or replace type Word as object
(
syn Syntax,
sem Semantics,
phon Phonetics,
letters varchar2(30)
)3
/

Oracle8 offers the possibility to define comparison operators, resp. map methods
and order methods. Map methods are quite simple: They use Oracle8’s ability
to compare built-in types by making the user define a method that provides
datatypes that Oracle8 can compare. In this case, I just return the actual word,
that is represented by an instance of the datatype. The other method (order
methods) requires more work: This methods use their own, programmed logic
to compare two instances of the datatype and then might return -1, 0, 4+1 to
indicate that one instance is smaller, equal or bigger than the other. If none
of the two possible methods are define, Oracle cannot determine enequality.
At least, there is a way Oracle8 attempts to determine equality: This is done
just by comparing the attributes of the datatype. In addition, I implemented
a second PL/SQL method, just to show a little bit of the functionality of the
language'*.

create or replace type body Semantics as

member function refs return varchar?2
is

ref_table ReferenceSet;

counter number;

best number:=0;

best_word varchar2(20) := ’no connections’;
begin

if self.references.count>0 then

for counter in 1..self.references.count loop
if best<self.references(counter).weight then
best:=self.references(counter) .weight;

select l.letters into best_word
from lexicon 1

13crtWord.sql
HcrtSemanticsBody.sql

15

www.manaraa.com



where ref(1l)=self.references(counter) .wref;
end if;
end loop;
end if;
return best_word;
end refs;

map member function ret_value return varchar2 is
begin
return content;
end ret_value;
end;

/

Below is the script used for creating the whole set of types. First of all, it
deletes any old definitions of types, then it calls the above defined scripts to
create the types and their bodies. Finally, it creates a log table, inserts a first
entry and finally prints out Oracle8’s error table to show the user any errors
which occured during the type definition steps'®.

Q@dropAll

@phonetics/crtPhoneme
@phonetics/crtPhonemeSet
@phonetics/crtPhonetics

create or replace type Word

/

@semantics/crtReference
O@semantics/crtReferenceSet
@semantics/crtSemantics

@syntax/crtSyntax

Q@crtWord

Q@crtLexicon
@semantics/crtSemanticsBody
create table Lexicon_log

(

when date,
text varchar2(30)
)

insert into Lexicon_log values

SertAllsql

16

www.manaraa.com




(sysdate,’creation of object table’);
select * from Lexicon_log;
select * from user_errors;

quit;

Firstly, an incomplete type Word was created, as it would cause a compilation
error to create Reference without the type Word already existing.

Just the last script is missing: Normaly, a table would be created consisting of
the desired types. But as REFs can only be used when working with object
table, another new feature of Oracle8 has to be explained and used.

Object tables are not too surprising. With them, the user is able to create a
table that just comprises one datatype, and they offer the possibility to use
references. An object table is created this way'®:

create table Lexicon of Word
nested table sem.references store as references_table;

The second line is necessary to create the nested table of the semantic subtype
which contains the references to other words.
Now the newly created table has to be populated. This is one way to do it:

delete from lexicon;

insert into Lexicon values

(
Word (
Syntax(’-e’,’’),
Semantics(’Fahrzeugland’ ,ReferenceSet()),
Phonetics (NULL,PhonemeSet ()),
’Mercedes’
)
);
insert into Lexicon values
(
Word (
Syntax(’-s’,’-s’),
Semantics(’Fahrzeugland’ ,ReferenceSet()),
Phonetics (NULL,PhonemeSet (
Phoneme (1,2) ,Phoneme (1,2) ,Phoneme(2,1))),
’BMW’
)
);

16crtLexicon.sql

17

www.manaraa.com



insert into the
(select 1.sem.references
from Lexicon 1
where 1.letters=’BMW’
)
select 2,ref(1l)
from Lexicon 1
where 1.letters=’Mercedes’;

insert into the
(select 1.sem.references
from Lexicon 1
where 1.letters=’BMW’
)
select 20,ref (1)
from Lexicon 1
where 1.letters="BMW’;

quit;

Especially the last SQL statement is interesting: First, the attribute of the ta-
ble Lexicon is selected, in which an item should be inserted. Then, the second
select decides which entry of the Lexicon qualifies. A reference to the qualifying
entry is then created and is inserted together with a value denoting the strength
of the semantic reference.

These are examples of some queries on the lexicon:

e This query just prints the words in the lexicon.

select l.letters
from lexicon 1;

quit;

e This query is a little bit more complicated. In the nested query, it se-
lects the references of the nested table of the lexicon entry for the word
'BMW'’. Then, the where clause selects the entries of the lexicon which
are referenced by the reference entry in the nested query.

select rt.weight,l.letters, 1l.sem.content
from the (select 1.sem.references

from lexicon 1

where 1.letters=’BMW’

) rt,

lexicon 1

where ref(l)=rt.wref;
quit;

18

Ol LAC U Zyl_ﬂbl

www.manaraa.com




This is the result of the query:

WEIGHT LETTERS SEM.CONTENT
2 Mercedes FahrzeuglLand
20 BMW Fahrzeugland

This would be the result, if the where clause of the outer query is deleted:

WEIGHT LETTERS SEM.CONTENT
2 Mercedes Fahrzeugland
20 Mercedes FahrzeuglLand
2 BMW Fahrzeugland
20 BMW FahrzeuglLand

e And here is one last query. In the inner nested query it selects all semantic
references of the entry of word 'BMW’. Then, from those entries, it selects
all entries that have a value bigger than 10. Then it takes the references
of those values and queries for the word entry (the letters attribute) of
those references.

select 1l.letters
from lexicon 1
where ref(l)=
( select r.wref
from the (select 1l.sem.references
from lexicon 1
where 1.letters=’BMW’) r
where r.weight>10
);
quit;

Now follow some little PL/SQL procedures:

e First of all: anonymous blocks. They can be seen as a special kind of
transaction. The source code is sent to the Oracle server and then exe-
cuted there. This is especially interesting when transactions are required
which cannot be expressed in "normal” SQL. With the help of PL/SQL,
those transactions can be performed completely at the server, whereas
without PL/SQL, data would have to be sent between server and client
to perform the parts which are not possible in SQL in a client-side appli-
cation. This PL/SQL code just inserts some data into the lexicon. It is
quite similar to the SQL code above that inserts values into lexicon. Just
note that there is a short exception handling routine at the end of the
anonymous block.

19

www.manaraa.com



begin
insert into Lexicon values

(
Word (
Syntax(’-s’,’-s’),
Semantics(’Fahrzeugland’,ReferenceSet()),
Phonetics (NULL,PhonemeSet (
Phoneme(1,1) ,Phoneme(1,2),
Phoneme (1,1) ,Phoneme(1,2))),
’Auto’
)

)

insert into the

(select 1.sem.references
from Lexicon 1

where 1l.letters=’Auto’
)

select 14,ref(1)

from Lexicon 1

where l.letters=’BMW’;

insert into the

(select 1.sem.references
from Lexicon 1

where 1l.letters=’Auto’

)

select 10,ref(1)

from Lexicon 1

where 1l.letters=’Mercedes’;

exception
when others then
rollback;
insert into lexicon_log values
(sysdate,’could not insert word Auto’);

end;

/
commit;

select 1l.letters from lexicon 1;
select * from lexicon_log;

quit;

20

www.manaraa.com




e It is of course possible to call any methods of datatypes, this little query
prints the word and its strongest reference:

select 1.letters,l.sem.refs()
from lexicon 1;
quit;

e And finally, a stored procedure is created with this script:

create or replace procedure pronounce (word varchar?2)
is
phon_set PhonemeSet;
act_phon Phoneme;
max_phon number;
begin
select 1.phon.pronunciation into phon_set
from lexicon 1
where 1.letters=word;
max_phon := phon_set.count;
act_phon := phon_set(1);
-- send phoneme-set to speakers...
exception
when others then
insert into lexicon_log values
(sysdate, ’procedure pronounce failed’);
end;
/
quit;

Stored procedures are executed this way:

execute pronounce(’BMW’);

3.5 Inheritance

Inheritance is a powerfull means for modelling. Inheritance is mainly regarded
in the context of datatype inheritance, but can also be viewed as inheritance of
tables with consequences on the data manipulation language.

3.5.1 Domain inheritance

Data inheritance is another extension to ORDBMSs’ type system. So far, types
in ORDBMSs comprise:

e built-in base types

e user-defined base types

e complex types (compositional, set-valued)

Ol LAC U Zyl_ﬂbl

21

www.manaraa.com




Datatypes and datatype inheritance can be seen from different view points: As
already discussed in the section about complex datatypes, there is the possibil-
ity of creating a table with nested relations instead of creating datatypes that
are then used in the table. This concept can be used here as well: Instead of
creating datatypes and then applying inheritance, a table might be created and
then another table, which inherits the properties of the first table.

The other case is what we are used to: Having datatypes, creating new ones
as shown in the sections above and then adding inheritance as another way of
creating new datatypes.

In both cases, there are some interesting consequences: Assuming a table hier-
archy, where a table manager is a subtype of table employee. Then, when doing
an update of table employee, we might want to do the update on all subtables
of table employee as well. Thus, a key word for an inheritance update might be
desirable. Something similar might be the case when thinking about datatypes
and their operators. If applicable, the operators of a type should be inherited
by the subtype as well, thus allowing code reuse.

As both of the above mentioned approaches to inheritance might be desired in
a database context, the question on how to generalize this idea arises. The ap-
proach that (D95) uses is not to define inheritance on the basis of datatypes or
tables but on the basis of the domains of datatypes resp. tables. The question
wether to use tables or datatypes to get a physical implementation can then be
decided by the programmer.

sub/superdomains Let A,B be OR-valued domains.
A inherits from B if the set of attributes of A is a superset of the attributes
of B.
B is then said to be a superdomain of A.
A is then said to be a subdomain of B.

operators of a domain Let Op be an operator of some domain A. Every sub-
domain of A inherits the operator.
Considering the paramters of the operator, the following has to be re-
marked:
If instead of a parameter of domain B a parameter of a subdomain of B
is handed over to the operator, the operator can perform its job without
any problems.

The inheritance relation within a database can be visualized by using a graph.
In general, an inheritance graph is always a DAG, sometimes, it might even
be desired to force only one inheritance graph for the whole system (see Java),
which assures a common structure for all objects of the inheritance hierarchy.

3.5.2 Inheritance in Postgres95
As Oracle does not provide inheritance, here is once again an example using

Postgres95:

22

www.manaraa.com



Inheritance is implemented in a rather straight forward way here!:

create table cities

(
name text,
population float,
altitude int

);

create table captials
(

state text
) inherits (cities);

In Postgres, a type can inherit from one or more other types, and a query can
reference either all instances of a class or all instances of a class plus all of its
descendants. A symbol * is used to indicate that the actual type of the query
and its subtypes should be queried:

select c.name, c.altitude
from cities c
where c.altitude > 500;

select c.name, c.altitude
from cities* c
where c.altitude > 500;

4 The future of ORDBMSs

In this seminar paper, I provided an overview concerning the four new features
that ORDBMSs are said to provide: base datatype extension, programming
language, complex datatypes, inheritance. These extensions can offer a frame-
work for easier and better modelling of database applications. Even though, it
has yet to be proved that those new features are usable without heavy loss of
performance. In addition, the question has to be addressed if a change to a real
object-oriented database system would be possible and even more reasonable.
The future will show if the new name ”object-relational” and the implied new
level in data processing is justified or if it was just an idea of marketing, if
the object-relational features just remain as a nice add-on to relational sys-
tems which does not prove to be very helpfull in real life or if object-relational
features are a real added-value to database systems that pays off.

"text is a variable length ASCII code string in Postgres95

23

www.manaraa.com



5 Addendum

5.1 External procedures

PL/SQL does not perform good when used as a programming language for
numerical computation. Oracle8 now offers the possibility of calling external C
procedures to use the execution speed of this language

Those external procedures have to be compiled into a library that can be linked
dynamically (DLLs,SOs). The procedures are then executed in an own address
space to safeguard the database system. This is an example of how to register
an external library and procedure for the use within Oracle8:

create library c_utils as ’/oracle/dll/utils.so’;

create function really_heavy_computation
(x binary_integer, y binary_integer)

return binary_integer

as external

external library c_utils

name calculate

language c;

And this is how to call an external function from PL/SQL:

create function fourier (x binary_integer)
return binary_integer
as

z binary_integer :=10;

result binary_integer;

begin
result := really_heavy_computation(x,z);
result := result + x;
return result;

end;

PL/SQL provides new datatypes for the data exchange to external procedures
(like binary_integer) and an extended parameter system to provide more secu-
rity for parameter exchange.

This new feature of Oracle8 offers interesting new possibilities in database pro-
gramming. It will be interesting to see how this feature is extended in the future
(multi-threaded programming, TPC etc.).

5.2 Object views

In addition to the new possiblities of the Object Option, Oracle provides a
means to add an object layer to an already existing relational database: object
views. Those views allow to define a view that behaves like an object table on
top of an already existing relational table:

24

www.manaraa.com



drop view 0Vlex;
drop table Lexicon2;
create table Lexicon2
(

id number,

syn Syntax,

sem Semantics,

phon Phonetics,

letters varchar2(30)
)
nested table sem.references store as references_table2;
insert into Lexicon2 values(1,NULL,NULL,NULL, ’Auto’);
insert into Lexicon2 values(2,NULL,NULL,NULL, ’Helikopter’);
insert into Lexicon2 values(3,NULL,NULL,NULL, ’Pfanne’);

create view 0Vlex of Word

with object oid (letters)

as

select 1l.syn,l.sem,l.phon,l.letters
from Lexicon2 1;

quit;

References

[C70] Codd, E. G. (1970). A relational model for large shared data banks. Com-
munications of the ACM, 13(6), p. 377-387

[CT79] Codd, E. G. (1979). Ezxtending the database relational model to capture
more meaning. ACM TODS 4

[CLC95] Chung, J.-Y., Lin, Y.-J.,, Chang, D. T. (1995). Ob-
jects  and  relational  databases. OOPSLA 95 Workshop,
http://www.eng.uci.edu/ cpeng/jychung/oopsla9s-workshop.html

[D95] Date, C. J. (1995). Relational database writings, 1991-199/. Addison-
Wesley, Reading/Mass

[KE97] Kemper, A., Eickler, A. (1997). Datenbanksysteme. Oldenbourg, Miin-
chen, ST 271 K32 D2

[KM94] Kemper, A., Moerkotte, G. (1994). Object-oriented database manage-
ment. Prentice Hall, Englewood Cliffs New Jersey, ST 271 K32

[M77] Makinouchi, A. (1977). A consideration of normal form on not-
necessarily normalized relations in the relational data model. Proceedings
of the international converence on very large data bases, p. 447-453

[OC97A] Oracle Co. (1997).0racle8 Server Concepts Vol. 1. 811/ST 271
063(8)-4,1

25

www.manaraa.com



[OC97B] Oracle Co. (1997).Oracle8 Server Concepts Vol. 2. 811/ST 271
063(8)-4,2

[PS87] Pollard, C. J., Sag, I. A. (1987). Information-based syntaz and seman-
tics. CSLI lecture notes, no. 13

[PG95] Yu, A., Chen, J. et al. (1995). The Postgres95 User Manual. (comes
with Postgres95 distribution)

[S93] Stiierner, Gunther (1993).Oracle? - die verteilte semantische Datenbank.
dbms publishing, Weissach

[SKS97] Silberschatz, A., Korth, H. F., Sudarshan, S. (1997). Database system
concepts. McGraw-Hill, New York, NY, ST 271 K85

[SM96] Stonebraker, M., Moore, D. (1996). Object-relational DBMSs. Morgan
Kaufmann, San Francisco, Calif., ST 271 S881 01

[SQLI2] (1992). Database language SQL, ANSI X3,135-1992. American Na-
tional Standards Instituts, New York

[SS86] Scheck, H. J., Scholl, M. H. (1986). The relational model with relation-
valued attributes. Information System 11(2), p. 137-147

26

www.manaraa.com




